
SEL COTS Study

Phase 1 Initial Characterization

Study Report

August 1998

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 ii

Contents

Executive Summary

Section 1. Background

Section 2. Study Goals

Section 3. Methods

3.1 Development of Goals, Questions, and Metrics.. 3–1

3.2 Interviews Conducted.. 3–2

3.3 Metrics Data Analysis ... 3–3

Section 4. Major Findings

Section 5. Major Contributions

5.1 COTS-Based Development Process Baseline Characteristic .. 5–1

5.2 New Data Collection Forms.. 5–4

5.2.1 Weekly Effort Form .. 5–5

5.2.2 COTS and Tools Information Form .. 5–6

5.3 Recommendations for Process Improvement.. 5–6

5.3.1 Local Improvements.. 5–7

5.3.2 Global Recommendations ... 5–7

5.4 Recommendation for SEL Improvement... 5–8

5.4.1 Interviews and Qualitative Data .. 5–8

5.4.2 Study Briefs... 5–9

Section 6. Further Work

Appendix A

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 iii

Appendix B

Appendix C

Acronyms

References

Figures

5–1 New SEL Process Flow... 5–3

5–2 Data Collected by Experimental COTS WEF... 5–6

Tables

1–1 Former SEL Package-Based Development Phase Characteristics 1–3

5–1 SEL Study Brief .. 5–10

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 1

Executive Summary

A current trend in software development, in both government and industry, is a move toward
commercial off-the-shelf (COTS)-based software development. The Flight Dynamics Division
(FDD)∗ at the National Aeronautics and Space Administration’s (NASA’s) Goddard Space Flight
Center (GSFC) is also experiencing this shift in the way that satellite ground support software is
being developed. The FDD has had a well-defined, documented process in place for many years
that covers the area of standard software development. The logical step at this stage in the FDD’s
evolution is to document its COTS-based, or package-based, development processes.

The task of this Software Engineering Laboratory (SEL) COTS study was to evaluate to what
degree the recommendations of SEL Package-Based System Development Process (which was
defined based on the traditional SEL-recommended development process, modified by informa-
tion on COTS development from the literature) have been implemented within the FDD and to
determine what difficulties and successes FDD developers have had integrating COTS. While
planning the COTS study, the study team concluded that the information needed was not readily
available in the SEL database; therefore, alternative methods for data collection needed to be
considered. The need for additional data forms to be filled out by project personnel was apparent,
as well as a need to collect qualitative data through structured interviews. Interviews were
conducted prior to considering new data forms so that insights gained from the interviews would
be used in the design of the data forms. The interviews conducted are described in detail in
Section 3.2.

More than 50 COTS packages were used by one or more of the 15 projects contacted during this
study. Several COTS packages, such as Satellite ToolKit, were used by various projects. Some
projects are using one or two COTS products, while others used more; one project used as many
as 13 individual COTS packages in its system.

For the developers of COTS-based systems to integrate the components, several behind-the-
scenes groups are crucial. Management support is needed with regard to decisions about which
COTS to evaluate and use and which products to procure. The developers also rely on support
from the procurement team. In many cases, a team would designate a point of contact with the
vendor. Having the team involved with the vendor throughout the life cycle is valuable. Support
from outside groups (e.g., projects with prior experience, the COTS evaluation team) enabled
teams to more readily become proficient with a new product. However, the time and effort
involved in learning about new products need to be planned for, whether it is the project coming
up to speed or that an outside group, such as the COTS Evaluation Team, is investigating the
product.

One contribution of this study is a detailed process characterization, which will serve as a base-
line from which process improvements can be measured and described. Although not every team
interviewed followed all of the steps outlined below, a composite process flow emerged from the
interview data. Note: None of the project teams interviewed had begun sustaining engineering.

∗
 The FDD ceased to exist as an organizational entity when GSFC reorganized in December 1997. Much of the work

 formerly performed by FDD (including SEL work) continues in various GSFC organizations.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 2

This step will be evaluated in future studies. The steps in the overall process, also shown in
Figure 5–1 and described in Section 5.1, are as follows:

� Requirements analysis

� Package identification, evaluation, and selection

� Non-COTS development

� Glueware requirements and development

� System integration and test

� Target system installation and acceptance test

� Discrepancy resolution

� Sustaining engineering

Another major contribution of the COTS study is a new set of data collection forms that will
allow the SEL to collect data that correctly describes COTS-based development activities. These
forms were developed in response to a need for more COTS-related data and to update the types
of data maintained in the SEL database. This new set of forms was created by modifying the
existing Weekly Effort Form and adding a new COTS and Tools Information Form. These forms
appear in Appendix B and are described in Section 5.2.

This document includes recommendations for improvements to the FDD COTS-based software
development process, based on the study of this process. Some of these are “local” improve-
ments, i.e. small changes to the current way COTS-based development is carried out to make this
process more efficient. Others are more “global” in the sense that they represent more sweeping
changes to the process that should be further studied. These recommendations, described briefly
here, are described fully in Section 5.3:

� Local

 Consider a new type of review, called a COTS review, held early in the process to re-
view high-level decisions about which components will be COTS, which will be de-
veloped from scratch, and what glueware will need to be developed.

 Recommend more administrative support for procurement.

 Rely on and support resource teams, such as the COTS Evaluation Team.

 Produce a Quick Reference Guide for the COTS-based development process.

� Global

 Avoid downstream conflicts between requirements and the capabilities of COTS
packages by performing COTS identification, evaluation, and selection before re-
quirements analysis.

 Allow the software development team to make more of the decisions regarding COTS
packages.

 Adjust the COTS-based development process based on the amount of COTS used in
the project.

 Integrate the traditional development process used to build components and glueware
with COTS-based development.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 3

The SEL COTS study also introduced some methods new to the SEL for carrying out studies and
disseminating findings to help the SEL respond to the changing, accelerating environment at
NASA/GSFC. These methods are described in Section 5.4. For example, the use of qualitative
data and analysis, in combination with other quantitative methods, has been found to be very
useful. Also, SEL Study Briefs were introduced as part of this study to concisely document and
quickly distribute timely information. These new approaches will be useful on future SEL
studies, especially in light of the current pressures on the SEL to keep up with the rapidly
changing nature of the development projects and organizations it is studying.

The future work of the COTS study is concentrated in three areas:

� Sustaining engineering of COTS-based systems

� Analysis of data from COTS-based projects to build cost models

� Risk analysis for COTS-based projects

These areas have been identified as having the most impact on the success of COTS projects.
However, studying these issues would not be possible without the underlying understanding
gained by the initial phase of the COTS study.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 1–1

Section 1. Background

A current trend in software development, in
both government and industry, is a move
toward package-based software develop-
ment. “Packages” refer to whole, completed
software components or subsystems that
have been built by an outside party. The
intent is that these packages can be plugged
into the system being developed, thus
avoiding a lot of new development. In this
way, the software development world is
moving toward configuring systems from
packaged components, rather than building
whole systems from scratch. Several terms
are used to refer to these packages.

� Commercial off-the-shelf (COTS) –
packages purchased from a commer-
cial vendor

� Government off-the-shelf (GOTS) –
software developed for the Federal
Government that is used by a team of
developers other than the original
authors of that software

� Package-based development – the
most generic term, but not widely
used among the technical community

COTS is the more commonly used term, and
for the purpose of this study, it is being
extended beyond its original meaning to
include GOTS. Throughout this report, the
terms “COTS” and “COTS-based develop-
ment” are used, except when referring to
SEL Package-Based System Development
Process (Reference 1).

The Flight Dynamics Division (FDD)∗ at the
National Aeronautics and Space Admini-
stration’s (NASA’s) Goddard Space Flight

∗
 The FDD ceased to exist as an organizational entity

when GSFC reorganized in December 1997. Much of
the work formerly performed by FDD (including SEL
work) continues in various GSFC organizations.

Center (GSFC) is also experiencing this shift
in the way it develops satellite ground
support software. The FDD has had a well-
defined, documented process in place for
many years that covers standard software
development that has evolved and been
optimized based on experience. The next
logical step in the FDD’s evolution is to
document its COTS-based development
processes, analyze these processes, and
improve them.

The NASA dictate to build all systems
“faster, better, cheaper” in no way implies
that methodology and process should be
eliminated. Nevertheless, as applications are
developed more rapidly, the process must
change to suit the environment. In 1995 and
1996, FDD personnel were still learning
how to develop software systems using
COTS packages. Therefore, the Software
Engineering Laboratory (SEL) relied on
outside experiences to define a tentative
process described in Reference 1. This
document relied on a solid understanding of
the FDD project domain, history, and
environment to synthesize information from
the literature into a strawman process to be
used to produce COTS-based systems in the
FDD. This initial strawman process was then
reviewed for feasibility by key FDD soft-
ware engineers (both civil servant and
contractor) who had some experience with
COTS. The resulting process was intended
to be used on FDD projects that integrate
COTS packages into their systems. As
projects gained experience with the process,
the SEL was refine it to reflect local experi-
ence and it was to be documented in an
official supplement to SEL Recommended
Approach to Software Development, Revi-
sion 3 (Reference 2).

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 1–2

Reference 1 is based on input from the
following sources:

� D. Boland, A Proposed Guide for
Package Integration by FDD Project
Teams

� D. Boland and D. Messent, SEAS
Package-Based Development Guide-
book

� Integrated Monitoring, Analysis, and
Control COTS System (IMACCS)
Team, IMACCS System Implementa-
tion Process and Lessons Learned

� Loral Federal Systems, COTS Inte-
gration and Support Model

� CSC CatalystSM, Package-Based
Development Methodology

� B. Boehm, COCOMO 2.0 Users
Guide

� Mitre Corporation, The Impact of
COTS on Maintenance Organiza-
tions

The process defined was meant to be used in
conjunction with Reference 2. On projects
where the system was composed of both
COTS products and custom-built compo-
nents, Reference 2 was to be followed for
the custom-built part and Reference 1 for the
COTS part. It was fairly easy to align the
two processes using the reviews as a guide.
Table 1–1 lists the phases, major activities,
products, and management checkpoints
(such as reviews) that this process recom-
mends. Because the package-based process
was new, projects were asked to record
lessons learned and provide feedback to the
SEL so that the process could be improved
for future projects.

The task of the SEL COTS study was to
determine to what degree the Reference 1
recommendations have been implemented
within the FDD and to learn about the
difficulties and successes FDD developers
have had integrating COTS. One original
objective of this work was to produce a
revision of Reference 1. However, this first
study of COTS-based development in the
FDD does not represent enough experience
with this new development paradigm to
warrant a revision of the document. After
several planned follow-on studies, this
document will be revised and made avail-
able in the same way as other SEL “best
practices” documents, such as the SEL
Manager’s Handbook. Eventually, this new
document will be merged with the next
revision of Reference 2.

This report describes the major activities,
findings, and contributions of the SEL
COTS study, as well as plans for several
follow-on studies intended to explore some
specific COTS-related questions in more
detail.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 1–3

Table 1–1. Former SEL Package-Based Development Phase Characteristics

Phase Major Activities Products
Management Check-

points

Requirements Analysis
and Package Identifica-
tion

� Requirements
analysis

� COTS package
survey and prelimi-
nary evaluation

� Requirements

� Strawman high-level
architecture

� Candidate packages

� System requirements
review (SRR)

Architecture Definition
and Package Selection

� Package evaluation

� Requirements
modification to use
existing packages

� Prototyping

� Modified require-
ments

� System architecture

� Final packages

� System design review
(SDR)

System Integration and
Test

� Use-case implemen-
tation

� Independent testing

� Delivered system � User demonstrations

� Operational readi-
ness review (ORR)

Technology Update and
System Maintenance

� Evaluation of new
products and tech-
nology

� Enhanced system � User demonstrations

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 2–1

Section 2. Study Goals

The general goal of this SEL COTS study
was to learn about how COTS-based devel-
opment is carried out in the FDD and to
provide recommendations for how it could
be conducted better. The three original
experimental objectives were as follows:

1. Revise the data collection for COTS-
based projects.

2. Produce baseline models (e.g., effort,
defects, schedule) for COTS-based
projects in FDD, where possible, af-
ter collecting data from COTS-based
project team personnel.

3. Revise SEL Package-Based System
Development Process as needed after
evaluating the experiences of COTS-
based project team personnel who
have evaluated, selected, and inte-
grated COTS products into their
software systems. The revised docu-
ment should define a robust process
that effectively works for COTS us-
age in Flight Dynamics so that the
SEL can distribute this as a SEL-
recommended process for COTS-
based projects.

The first goal was achieved and is described
in Section 5.2. The baseline models of the
second goal need to wait until more data is
collected using the new data collection
mechanisms designed for COTS projects.
However, a detailed baseline process model
has been built and is described in Sec-
tion 5.1. As discussed previously, the
revision of the SEL document on COTS-
based development (goal 3) has been
deferred until more experience with COTS-
based development in the FDD has resulted
in more consistency and consensus on how it
is carried out.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 3–1

Section 3. Methods

This section describes the three basic
research methods used to carry out the
COTS study. Section 3.1 presents the goal/
question/metric (GQM) structure that was
used to plan the study, Section 3.2 describes
the GQM structure that helped guide the
interviews conducted, and Section 3.3
describes some of the quantitative data
analysis.

3.1 Development of Goals,
Questions, and Metrics

The various activities performed by the
COTS study team are reflected in the team’s
six measurement goals:

1. Analyze the COTS products being
used in the FDD for the purpose of
identification, with respect to name
and type, from the point of view of
COTS-based project team personnel.

2. Analyze the COTS-based develop-
ment process used in the FDD for the
purpose of characterization, with re-
spect to steps followed in their proc-
ess, from the point of view of COTS-
based project team personnel.

3. Analyze the COTS-based develop-
ment process used in the FDD for the
purpose of characterization, with re-
spect to cost, schedule, problems en-
countered, risks, and guidance or
documentation used, from the point
of view of COTS-based project team
personnel.

4. Analyze the COTS-based develop-
ment process used in the FDD for the
purpose of characterization of the
differences from traditional devel-
opment processes and from SEL
COTS-based process from the point

of view of COTS-based project team
personnel.

5. Analyze the COTS-based develop-
ment process used in the FDD for the
purpose of evaluation in comparison
to traditional development processes
and to SEL COTS-based process,
from the point of view of COTS-
based project team personnel.

6. Analyze Reference 1 for the purpose
of improvement, with respect to use-
fulness, from the point of view of
COTS-based project team personnel.

Many of the questions formulated to address
these goals (as part of the GQM process)
were incorporated into the interview guides
described in Section 3.2. Incorporation of
these questions into the guides constitutes
the metrics part of the GQM. Other ques-
tions were better addressed through analysis
of data. Attempting to do this revealed the
inadequacies of the current SEL data collec-
tion in terms of collecting information on
COTS-based development. This, in turn, led
to deferment of some of the associated goals
and to redesign of some data forms
(described in Section 5.2).

For example, goal 1 led to a question on the
interview guide that asked project personnel
which COTS products and types of COTS
products were being used on projects.
Information generated by this question led to
a table listing all such COTS products, thus
satisfying goal 1. Goal 2 led to a number of
questions on the interview guides, address-
ing the steps followed in COTS-based
development and the variations that occur in
different situations. The result of collecting
that information is the baseline process
characterization described in Section 5.1.
Goal 3 also led to some interview guide

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 3–2

questions, in particular concerning problems
and risks associated with COTS and the
documentation used. Some of the results of
posing these questions are presented in
Section 4. Other questions related to goal 3
had to do with cost and schedule and re-
quired some data analysis to be answered.
This led to redesigning some SEL data
forms (described in Section 5.2).

Goals 4 and 5 also generated interview guide
questions having to do with differences,
advantages, and disadvantages of COTS-
based development in comparison to tradi-
tional development. The comparison with
Reference 1 was made by the study team
because project personnel were generally not
familiar with the SEL process document.
These results are summarized in Sections 4
and 5.1.

Finally, goal 6 resulted in some questions
that could not be addressed by this initial
phase of the COTS study. Improvement to
Reference 1 will have to wait until later
stages of the study.

3.2 Interviews Conducted

While planning the COTS study, the study
team concluded that the information it
needed was not readily available in the SEL
database; therefore, the team would have to
consider alternative methods for data
collection. The need for additional data
forms to be filled out by project personnel
was apparent, as well as a need to collect
qualitative data through structured inter-
views. Interviews were conducted prior to
developing new data forms so that insights
gained from the interviews could be used in
the design of the forms.

Basically, three different types of interviews
were conducted, each at a different level of
detail. The first set of interviews was
intended to obtain basic information on

which projects were using COTS products,
which products were being used, and how
the products were being used. The second
set of interviews was aimed more specifi-
cally at finding the process steps that were
being followed in COTS-based develop-
ment, in addition to the advantages and
disadvantages of COTS use. After an initial
process description was derived from the
second set of interview data, the third set of
interviews was conducted to validate the
team’s understanding of the COTS-based
development process. Interview guides were
designed and used for each level of inter-
view (see Appendix A).

The interviews were conducted by teams
composed of two study team members. One
team member served as the interviewer and
the second as the scribe. The interviewer’s
responsibilities included conducting the
interview using the interview guide as an
outline, posing open-ended questions to the
interviewee, and following up as appropriate
to gather as much information as was
reasonable.

The scribe’s two main responsibilities were
to (1) keep notes on the information covered
in the interview to enable the interviewer to
concentrate on facilitating the interview
process and (2) document the interview in a
structured textual manner following the
basic outline of the interview guide. The
scribe usually spent some time after the
interview to write detailed notes on all of the
interviewee’s responses, based on notes
taken during the interview.

Two quality checks are built into this
system. First, at the end of the interview, the
scribe asks the interviewee to clarify parts of
the interview as needed and asks any ques-
tions from the interview guide that may have
been inadvertently omitted by the inter-
viewer. Second, prior to finalizing the
interview notes, the interviewer reviews

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 3–3

them for concurrence. In this manner, the
two-person team functions more effectively
than a single interviewer.

The interview data was analyzed in several
ways to extract a variety of different types of
information. Different study team members
reviewed the interview notes, each concen-
trating on gaining an understanding of a
different aspect of COTS-based develop-
ment. The notes were reviewed using
varying levels of rigor. For example, at the
most basic level, a list was generated from
the interview notes of all the COTS products
considered by projects. A new data collec-
tion form—the COTS and Tools Information
Form (CTIF)—designed to collect this
information directly from projects in the
future is now readily available from the SEL
database, along with characteristics of the
COTS product and its use on that project.

At the other end of the spectrum, the inter-
view notes were also analyzed using a
method loosely based on the constant
comparison method (References 3 and 4), a
rigorous qualitative analysis method used to
identify trends and consensus in textual data.
This type of analysis led to findings about
the process steps followed in COTS-based
development and the main advantages and
disadvantages of using COTS. This analysis
contributed to the design of a revised
Weekly Effort Form (WEF). The new data
forms are described in Section 5.2.

The study team learned several lessons about
interviewing as a result of this process.

� By structuring the interviews and
limiting them to 30 minutes, people
were willing to make room in their
schedules for the interviews. Of the
25 people contacted to request an
interview, only one was unable to
spare 30 minutes.

� The two-person interview team was
effective. The checks and balances
built into such a team are its greatest
strength.

� When collecting qualitative data,
verification steps are crucial. The
interview process had two main veri-
fication steps:

 Verification of the interview
notes between the interviewer
and the scribe

 A third interview that verified the
process seen and that uncovered
any additional areas for concen-
tration

An additional verification step oc-
curs when an SEL Study Brief (see
Section 5.4) is posted on the Web—
the contributors of information are
contacted so that they review the
brief and participate in the built-in
SEL Study Brief feedback loop.

3.3 Metrics Data Analysis

The study team also analyzed historical
quantitative data from projects. In particular,
bar charts generated (see Figure 3–1) helped
the team identify issues for further study.
Quantitative data collected through the use
of the new data forms will be analyzed as
part of the future work of the COTS study
team.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 4–1

Section 4. Major Findings

More than 50 COTS packages were used by
one or more of the 15 projects contacted
during this study. Several COTS packages,
such as the Satellite ToolKit, were used by
various projects. Some projects are using
one or two COTS products, while others
used more. One project used as many as 13
individual COTS packages in their system.

COTS packages were used to build ground
support systems, as well as assist in a
platform transition from mainframe to
workstation that all flight dynamics systems
underwent. COTS used in this effort ran the
gamut from a COTS product that completes
the entire function of a telemetry processor,
to fourth-generation languages that must be
delivered with the system to maintain it.

During the interviews, most developers said
that they did not follow Reference 1. How-
ever, when asked to detail the steps they did
follow, those steps generally did fall within
the basic structure of the SEL process.
Although the personnel interviewed used
different words to describe their processes,
the study team could provide an integrated
abstraction of a common COTS-based
development process. Few of the developers
interviewed described their processes in the
way presented in Section 5.1, but on seeing
that abstraction, they all could identify their
activities within the abstracted process. This
indicates that the process defined in Refer-
ence 1 is reasonable in this environment and
that improvements to the document will be a
matter of presenting the information in the
most readily accessible and useful form and
not a complete overhaul of the process.

It became apparent in the early stages of the
COTS study that the data the SEL had been
collecting would not be sufficient to gain
insights into the COTS issue. Several

lessons were learned as a result. The team
learned that conducting interviews allowed
collection of the data needed, conducting
interviews provided the types of data that
should be collected, and creating a new form
and modifying an existing form would
enable the team to translate data collected
during an interview onto the forms. This
allows future interviews to concentrate on
the qualitative data.

The developers interviewed were asked to
describe the major differences between
COTS-based development and traditional
development and the advantages and draw-
backs. Some mentioned the obvious differ-
ence, i.e., that there is now a lot of software
that does not need to be implemented. It is
no longer the task of building a big system,
but of using already-built pieces. Other less-
obvious differences also were mentioned.
Some of the opinions raised, although not
necessarily supported by quantitative data,
are as follows:

� Different design phases – Design fo-
cused more on how to fit pieces to-
gether rather than the internal
workings of different modules

� Looser process requirements – Be-
cause much of the standard SEL rec-
ommended process did not apply to
COTS-based development and
schedules were very tight, project
personnel felt freer to loosen the
process requirements

� New or greatly increased need for
vendor interaction – Interaction with
the vendor occurred at different lev-
els throughout the project

� Procurement skills now needed –
Procurement required some technical
knowledge so it was not an adminis-

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 4–2

trative activity, but technical person-
nel were not prepared to deal with
procurement issues

� New or greatly increased need for
product evaluations – Another new
skill or activity that developers were
not always prepared for

� No unit test or inspections of pack-
aged software – Because source code
is not delivered with most packaged
software, it is not possible to unit test
or inspect it

� Teams should be empowered to
make decisions regarding COTS, as
opposed to management dictates that
a specific COTS shall be used

Advantages of COTS-based development
that were mentioned included

� More flexible requirements – There
was usually some room to adjust re-
quirements to fit the COTS products
being used

� Less process overhead – As above,
tightened schedules and an undefined
process allowed projects to cut out
process steps that they felt were un-
necessary, while still maintaining a
sense of process

� Less code to write – Large portions
of the system were constituted by
COTS and thus did not have to be
written

� Less debugging – Similarly, portions
of the system constituted by COTS
did not have to be debugged

� Shorter cycle time – Possibly be-
cause of schedule pressure, COTS
projects seemed to be completed
more quickly, although this needs to
be confirmed empirically

� Better adherence to schedule – There
was a perception that schedules were

kept better in COTS projects, al-
though this must be confirmed em-
pirically

� Serendipitously useful functionality
in COTS packages – Sometimes
functionality was discovered in a
COTS package that was useful, even
though the project had not originally
planned to use it

Disadvantages mentioned involved

� Dealing with the vendor – The ven-
dor constituted one more party with
whom communication channels had
to be established and maintained

� Less than full knowledge beforehand
of the product – Sometimes surprises
occurred having to do with the qual-
ity or functionality of a COTS pack-
age

� Dependence on the vendor – Project
personnel had to rely on the vendor
for a variety of technical issues, but
vendor personnel were not always as
helpful or available as promised

� Vendor negotiations – Technical per-
sonnel were not always prepared to
deal with the business aspects of
purchasing COTS packages

� Looseness of the process – Also
mentioned as an advantage, but some
people thought that more rigor was
needed

For the developers of COTS-based systems
to integrate the components, several behind-
the-scenes groups are crucial. Support from
management is crucial. The developers also
rely on support from the procurement team.
In many cases, a team would designate a
point of contact with the vendor. Having the
team involved with the vendor throughout
the life cycle is invaluable. Support from
outside groups (e.g., projects with prior
experience, COTS evaluation team) allowed

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 4–3

teams to become proficient more readily
with a new product.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 5–1

Section 5. Major Contributions

The major contributions of the COTS study
are several tools that will greatly enhance the
further study of COTS-based development
in the FDD and other environments at
GSFC. These contributions also will facili-
tate the improvement of COTS-based
development.

First is a detailed process characterization,
which will serve as a baseline from which
process improvements can be measured and
described. Second is a new set of data
collection forms that will allow the SEL to
collect data that correctly describes COTS-
based development activities. Finally, two
sets of improvement recommendations—one
for COTS-based development itself and
another for the activities of the SEL—help
the SEL respond to GSFC’s changing,
accelerating environment.

5.1 COTS-Based Development
Process Baseline Charac-
terization

As a first step in understanding where
COTS-based development in the FDD stood,
the study team analyzed the current data
collection. Historically, the SEL collects
effort data. For typical pre-COTS era
projects, the SEL has a baseline of effort
divided into four simple categories of
activities. The SEL had earlier anticipated
the need for data specific to COTS projects
and had made an attempt to gather data on
this effort, but the level of detail was too
general to allow understanding of the
COTS-related effort. One indication that the
SEL was not capturing useful data is the
large amount of effort that fell into the
“other” category.

Clearly, the quantitative information avail-
able was not sufficient to identify and
understand the new issues that were arising
in relation to the use of COTS packages in
FDD projects. To gather more and richer
information on this topic, the study team
designed and conducted structured inter-
views, using three levels of interview guides
at increasing levels of detail, with represen-
tatives from 12 projects. Topics covered
included the process steps carried out, what
problems were encountered with the use of
COTS in development, and how the incor-
poration of COTS has changed the software
development process.

Reference 1 splits the package identification
and package selection steps, the first being
part of requirements analysis and the second
being part of architecture definition, with the
SRR in between. However, the interviews
show that the process being followed within
the FDD generally combines package
identification, evaluation, and selection and
performs all three at one time, after require-
ments analysis. This is probably because, in
many projects, the requirements and some-
times even the system architecture are
defined outside the scope of the develop-
ment project. Therefore, often the only
activity necessary before completing the
high-level design is deciding which parts of
the system will be COTS-based (and on
which COTS they will be based) and which
will be written in-house. Another difference
between the COTS process characterized
and the 1996 SEL process is that the 1996
process requires more reviews (e.g., SRR,
SDR, ORR) than are actually being carried
out. Some projects conduct SRRs and SDRs,
but many do not. Most of the projects
studied have not yet reached the ORR stage.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 5–2

When asked what types of documentation or
information would be helpful to projects
attempting a package-based development,
several things were mentioned. Projects
need guidance on how to integrate the
traditional style development of glueware
into the process, but do not need as much
guidance on product evaluation because they
can rely on other parts of the organization
for that (e.g., previous project personnel or
the COTS Evaluation Team). Several people
mentioned that a streamlined, condensed
process document (as compared the current
SEL Package-Based System Development
Process) would be helpful. Also helpful
would be up-to-date lists of local resources
in terms of people with experience with
different packages and vendors, available
site licenses, and where to look for help with
the overwhelming administrative tasks
involved in package-based development.

The interviews uncovered the new process
flow, shown in Figure 5–1. The study team
discovered more complexity in the current
practice than expected in theory. For exam-
ple, the team had expected vendor interac-
tion to be simple and to end with the
purchase of a product. In reality, the interac-
tion continues throughout the life cycle, and
the flow of information is not merely one
way. Surprisingly, the team found a strong
dependence on bi-directional information
flow. Also shown is a more constant in-
volvement with separate organizations, such
as other projects that also use COTS,
independent evaluation teams, and other
customers of the vendor. Portions of the
COTS-based systems include traditionally
developed software. Therefore, an issue to
consider is how to fit together the SEL’s
traditional process, as documented in
Reference 2, and its new way of doing
business by integrating COTS packages to
build a system.

The software development teams inter-
viewed included both FDD and Computer
Sciences Corporation (CSC) personnel.
Although not every team followed all eight
steps, a composite process flow emerged
from the interview data. The contribution of
modeling this process flow is that it consti-
tutes an abstraction of the process at a level
of detail that is high enough to represent all
the different ways that COTS-based systems
are being developed in the FDD, but with
enough detail to provide useful guidance to
COTS projects. Note: None of the project
teams interviewed had begun step 8. This
step will be evaluated in future studies. The
eight steps in the overall process, as shown
in Figure 5–1, are as follows:

1. Requirements analysis

2. Package identification, evaluation,
and selection

3. Non-COTS development

4. Glueware requirements and devel-
opment

5. System integration and test

6. Target system installation and ac-
ceptance test

7. Discrepancy resolution

8. Sustaining engineering

The earliest steps in COTS-based develop-
ment are similar to traditional develop-
ment—requirements gathering. In the
requirements phase, a strong emphasis is on
gathering external information. Much of this
information comes from separate organiza-
tions, particularly the product vendor, in the
form of documented functionality. Some
project requirements are predefined, with
minimal requirements analysis needed. Early
reviews of the requirements are crucial even
with a less formal process.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 5–3

information flow – bidirecitonal
process flow

hard requirements

process

process check or review

traditional waterfall development

separate entity

External
Information Vendor

Requirements
Analysis

System
Requirements

Review

Package
Identification
Evaluation/
Selection

Identify
Glueware and

Integration
Requirements

System
Design
Review

Write
Glueware

and
Interfaces

Integration
and
Test

Non-COTS
DevelopmentSystem

Architecture

Discrepancy
Report

Process

Target
System

Installation and
Acceptance

Test

Sustaining
Engineering

Key:

10042050W-001

Figure 5–1. New SEL Process Flow

Following requirements analysis are the new
and concurrent steps of package identifica-
tion, evaluation, and selection. These new
activities require new technical skills and
new administrative duties, especially in the
area of procurement.

Package identification consists of Web
searches, product literature surveys and
reviews, other system component reuse, and
recommendations from external sources.
Product information is kept in either a
central justification notebook or an evalua-
tion notebook. Not only are product evalua-
tion notes kept, but also subjective
comments concerning the vendor quality and
responsiveness.

As packages are identified, the evaluation
and selection processes begin. Package
evaluation steps mentioned in the interviews
consisted of prototyping, vendor demonstra-
tions, and in-depth review of literature, such

as manuals and users guides. Glueware and
interfaces as dictated by the system archi-
tecture, operating system, and hardware are
identified. Vendor training, sites, and
availability are considered. Procurement
issues surface, such as development fees for
added requirements, licensing and mainte-
nance fees, and sustaining engineering
support.

Step 2 sometimes uses a weighted average.
Vendor capabilities are listed and mapped to
the system requirements. With team agree-
ment, weights of importance are assigned to
each requirement. Each team member then
votes. Team members are polled and the
votes tallied. Discussion ensues and a choice
is made. In cases where the vendor will code
additional functionality, the vendor is
notified of the decision. In one case, when
the team told the vendor it was selected, the
vendor announced a hidden cost. Negotia-

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 5–4

tions ended altogether, and the second
choice vendor and package were used.

In both of these first two process stages, the
study team found that some projects relied
on the COTS Evaluation Team, which is
chartered by the parent organization to
survey the marketplace and evaluate vendor
packages that fall within the domain exper-
tise of the mission team's organization. The
evaluation team then reports its findings and
offers this knowledge to the project teams.
The project team is ultimately responsible
for deciding which package to select and
integrate. The evaluation team can be
important when delivery time is driving the
project—time the development team does
not have for product evaluations.

Most projects studied have an element of
traditional development that does not
depend on COTS or other packages. This
development begins in parallel with the early
COTS-related steps, as a traditional devel-
opment project. Non-COTS cost and sched-
ule are monitored. Bi-directional
information flow between the COTS-based
process flow and the non-COTS develop-
ment comes into play in the design review.
Only some teams held a formal SDR, but all
teams had some kind of mechanism to
apprise the customer of the design.

After the design review, whether it is formal
or informal, traditional non-COTS develop-
ment continues in parallel with the coding of
the glueware and the interfaces. Close
contact with the vendor technical staff or a
competent help desk is essential during this
development.

The integration step varies a great deal from
project to project, depending on which and
how many COTS products are being used.
At system integration and testing, the COTS
packages are treated as black boxes. The
teams commented that testing focused on the
interface glueware and the input file format.

Again, the importance of the vendor techni-
cal staff or help desk availability was
emphasized. Testing is conducted on each
software component as the components are
integrated piece-by-piece.

Unlike the traditional life cycle, no formal
acceptance testing or operational readiness
reviews were mentioned by the teams. The
development team installs the software on
the target system. Once installed, naviga-
tional training to familiarize the customer
with the system is conducted. During this
phase, a member of the development team is
the single point of contact or intermediary
between the customer and the vendor. This
person is responsible for reporting discrep-
ancies and handling software “patches” or
corrections. Interviewees mentioned that
software patches were placed on vendor
Web sites that were downloaded to the target
system.

The end of the configuration process is
marked by step 8, sustaining engineering. To
date, no team interviewed had reached this
step.

5.2 New Data Collection
Forms

In response to a need for more COTS-related
data, the SEL realized an opportunity to
update the types of data maintained in the
SEL database. This was accomplished by
modifying the existing WEF and adding a
new CTIF. These forms also served to
codify and quantify some of the information
the study team found to be important from
the interviews conducted. By using the new
forms, this information does not have to be
included in future interviews, but can be
collected in more cost effectively.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 5–5

5.2.1 Weekly Effort Form

As the interview data lead the study team to
define the COTS-based development
process, the team discovered that projects
were conducting new activities:

� COTS/GOTS evaluation activities
included identifying packages, col-
lecting information, attending dem-
onstrations, and evaluating and
selecting COTS/GOTS packages.

� COTS/GOTS integration included
integrating COTS and GOTS, possi-
bly with other software components,
to produce individual applications or
subsystems. This also included the
writing and debugging of glueware.

� COTS package familiarization is
spending time to learn to use a
COTS package, not including formal
training, which would be included
under other effort categories, or
package familiarization for the pur-
poses of evaluation.

� Configuration management had not
previously been a separate category.

� Procurement included procuring and
purchasing packages, interacting
with vendors regarding licensing and
maintenance agreements, etc.

In June 1997, these new activities were
merged into the WEF (the SEL form in use
since October 1995) for collecting effort
data from the technical personnel. This
merger created a WEF modified for COTS
that was then used on a trial basis by two
projects. Appendix B provides copies of the
October 1995 WEF and the June 1997
experimental COTS WEF. After experi-
mental use of this COTS WEF and a few
resulting updates, the SEL decided to
implement the updated WEF across the
organization. This was accomplished
through full consultation with FDD technical

personnel. The resulting WEF was put into
place November 1997 (also included in
Appendix B).

Figure 5–2 shows the type of data collected
by the experimental COTS WEF, the
October 1995 WEF, and the even earlier
SEL WEF that was in use prior to October
1995. The leftmost bar shows the typical
distribution of effort on completed FDD
projects prior to October 1995. The major
activities fall into four groups: design, code,
test, and administrative; no activity deals
with COTS.

The middle bar shows the effort distribution
for a nearly complete FDD project that was
developing during the era of the October
1995 WEF that involved some COTS
integration. The October 1995 WEF intro-
duced a predesign category. It also intro-
duced a technical other category that
contained a prototyping activity plus the
single COTS activity (a catchall for any
COTS-related work). For the purposes of
this study, the term technical other is used to
clarify a category listed in the October 1995
and June 1997 WEFs as miscellaneous. This
clarification has been formalized in the
November 1997 WEF. Note that this middle
bar shows a great increase in the proportion
of project effort spent in the administrative
activity. Various hypotheses were examined
to explain this change, but none proved
conclusive.

The rightmost bar shows the distribution of
effort for a FDD project that involved a fair
amount of COTS integration, but was only
partially complete. This project began using
the experimental COTS WEF soon after the
project began. Only about 12 weeks of data
were available for analysis. The data in this
bar is thus insufficient to draw any conclu-
sions on the distribution of effort on a
typical FDD project, yet alone a project in
another environment. Data on several

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 5–6

complete projects would be required before
the typical FDD effort distribution on a
COTS project could be determined. How-

ever, Figure 5–2 provides some idea of how
the new WEF changes the way effort on
COTS projects can be viewed.

0%

20%

40%

60%

80%

100%

Baseline COTS Project
Old Forms

COTS Project
New Forms

P
er

ce
nt

 o
f T

ot
al

 H
ou

rs

Administrative
(non-COTS)

Administrative
(COTS)

Technical Other
(non-COTS)

Technical Other
(COTS)

Test

Code (non-COTS)

Code (COTS)

Design (non-COTS)

Design (COTS)

Predesign

Major Categories Activities

New
Jun 97

New
Oct 95

New
Jun 97

New
Jun 97

New
Oct 95

10042050W-002

Figure 5–2. Data Collected by Experimental COTS WEF

5.2.2 COTS and Tools Informa-
tion Form

To collect context data about the COTS
packages used on projects, the SEL devel-
oped the CTIF (shown in Appendix B). The
need for the CTIF became evident during the
interview process. The study team was
collecting qualitative data, such as which
COTS packages are used, what support is
provided by the vendor, and whether COTS
is embedded into the system or is merely a
tool. Rather than maintaining all this infor-
mation in the interview notes, the team
developed the CTIF to collect data that
would be stored, and thus readily accessible,
in the SEL database. Using the CTIF to
collect this context data allows the study
team to characterize the COTS products to

better compare projects that are related
either in the type of COTS products used or
in functionality provided by COTS.

5.3 Recommendations for
Process Improvement

This section outlines some recommendations
for improvements to the COTS-based
software development process in the FDD,
based on this study of the process. These
recommendations are divided into two
groups:

� A set of local improvements, i.e.,
small changes to the current way
COTS-based development is carried
out to make this process more effi-
cient.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 5–7

� A set of global recommendations,
which represents more sweeping
changes to the process that should be
further studied

5.3.1 Local Improvements

Based on this study of current COTS proj-
ects, several local, or relatively narrow
scope, improvements to the process are
recommended. The first has to do with one
of the process steps, the design review. The
second and third improvements are organ-
izational rather than technical. The fourth
improvement is a way to provide better
support to personnel carrying out COTS
projects.

� Improvement 1 – Most COTS proj-
ects perform some sort of review af-
ter a high-level design is complete
and before implementation and inte-
gration begin. Many projects treat
this as a type of design review, al-
though other topics are covered, such
as the decisions made about the
COTS products to be used. The study
team recommends that more guid-
ance be given in conducting this re-
view, which means designing a new
type of review—a COTS review.
This review would go over the high-
level decisions about which compo-
nents will be COTS, which will be
developed from scratch, and what
glueware needs to be developed.

� Improvement 2 – More administra-
tive support for procurement is
needed, especially easily accessible
records about what products have al-
ready been procured by the organi-
zation and where they are located.

� Improvement 3 – Increase reliance
on and support for the COTS
Evaluation Team. Evaluation by in-
dividual projects tends to be narrow

in scope, concentrating only on those
packages with which project team
members are familiar.

� Improvement 4 – A “Quick Refer-
ence Guide” for the COTS-based de-
velopment process would be useful.
Such a guide should be brief (no
more than two sides of a sheet of pa-
per) and highlight the most important
aspects that a COTS project team
needs to keep in mind. The COTS
study team is currently developing
such a guide, which soon will be
available to FDD projects.

5.3.2 Global Recommendations

Several areas require more detailed study.
These areas could potentially improve the
effectiveness of the process and are sug-
gested by the findings of this study, but it is
not clear at this time how or whether they
should be implemented. These suggestions
include the following:

� Perform COTS identification,
evaluation, and selection before or in
conjunction with requirements analy-
sis, and then write requirements tai-
lored to the COTS products chosen.
This would help eliminate later
problems caused by conflicts be-
tween requirements and the capabili-
ties of the COTS packages. It would
also maximize the benefits of the
COTS packages.

� Allow the software development
team to be included in the decisions
regarding COTS packages. For many
projects, COTS choices were made
outside the team, thus ignoring the
team’s expertise and experience. Re-
quirements also often came from
outside the team, and conflicts be-
tween requirements and COTS func-

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 5–8

tionality often occurred later in the
project.

� Adjust the COTS-based development
process based on the amount of
COTS used in the project. A project
that only uses one COTS package to
implement a minor subsystem should
not follow the exact same develop-
ment process as a project that is inte-
grating numerous COTS packages
that will constitute most of the re-
sulting system.

� Integrate the traditional development
process used to build components
and glueware with COTS-based de-
velopment. Figure 5–1 shows basi-
cally two parallel tracks in the
process flow, representing two sepa-
rate types of development taking
place in the same project. These par-
allel tracks may imply duplicated ef-
fort and communication difficulties
between project members. Integrat-
ing the two tracks might increase ef-
fectiveness and efficiency.

These points are not independent. The first
two both have to do with the relationship
between requirements and COTS choices.
The second two are both related to the
balance between COTS integration and
from-scratch development, either of compo-
nents or glueware. Clearly, these are not
straightforward to implement and thus
require further study.

5.4 Recommendations for SEL
Improvement

The SEL COTS study also introduced some
methods new to the SEL for carrying out
studies and disseminating findings. These
new approaches will be useful on future SEL
studies, especially in light of current pres-
sures on the SEL to keep up with the rapidly

changing nature of the development projects
and organizations it is studying.

5.4.1 Interviews and Qualitative
Data

Empirical studies in software engineering,
like the ones that the SEL has engaged in for
2 decades, have traditionally relied on
standard quantitative methods to character-
ize some aspect of a software development
process. In some cases, several quantitative
studies of various sizes and scopes have
been conducted to address one general issue,
e.g., Cleanroom software development [see
Evaluation of Software Technologies:
Testing, Cleanroom, and Metrics
(Reference 5)]. Approaching a problem from
several angles in this way yields a more
complete description of a particular process
or of the effect of a particular technology.
This approach has helped the SEL and other
organizations learn a great deal about their
software business. In recent years, however,
software projects in the SEL environment
have become both more complex and faster-
paced, as is true in much of the software
industry. This has motivated the SEL to find
ways to provide richer answers to more
complex problems in less time.

One approach to achieving this goal is for
the SEL to use different research methods
than it is accustomed to using, in particular
qualitative methods. Qualitative data is
information in the form of words and
pictures, as opposed to quantitative data,
which is in the form of numbers. Qualitative
analysis is simply the examination and
analysis of qualitative data to form conclu-
sions and hypotheses. Qualitative data is by
definition richer and carries more informa-
tion than quantitative data. On the other
hand, it is more complex and harder to
analyze. Qualitative analysis methods have
been designed to deal with this complexity

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 5–9

(References 3 and 4). Combinations of
qualitative and quantitative methods are
especially useful because the two types of
methods tend to deal with the complexity of
the subject in complementary ways.

The COTS study is one of the first SEL
studies to use qualitative data to a large
extent (Reference 6 provides another exam-
ple). The qualitative data used in this study
comes from extensive interviews with
software developers and managers. Using
this data has allowed an in-depth examina-
tion of COTS-based development that
incorporates a variety of perspectives in one
study. For example, data was collected on
the problems encountered during COTS-
based development, the different steps
involved, the parts of the process that are
effort-intensive, and the roles that must be
filled to carry out this type of development.
Much of this information would be very
difficult to collect quantitatively and would
have required multiple studies, each meas-
uring various attributes in different ways.

The drawbacks to doing qualitative study is
that it does not provide hard results in terms
of easy-to-use mathematical models (e.g.,
regression models) or easy-to-summarize
relationships between variables (e.g.,
correlations). Instead, qualitative results are
messier (i.e., more complex) to reflect the
complexity of the problem being described.
It is usually helpful to combine qualitative
and quantitative methods in the same study
because the two approaches have comple-
mentary approaches to handling the com-
plexity of the subject.

Quantitative approaches tend to abstract
away complexity to reveal any strong
relationships that might otherwise be
obscured. Qualitative approaches, on the
other hand, delve directly into the complex-
ity that complicates the straightforward
quantitative findings and attempt to bring

some order to the complexity without
simplifying it. The COTS study, at this
point, suffers a bit from a lack of quantita-
tive analysis of COTS-related data because
very little data is available at this time. The
study team’s findings will be greatly
strengthened and more useful when it has
analyzed the data collected using the new
data forms for several complete projects.

Working with qualitative data is also very
effort intensive. Qualitative analysis cannot
be automated in the same way as quantita-
tive analysis through the use of statistical
software. However, the kind of intensive
study of the COTS process that the study
team conducted to gain an initial under-
standing of a new phenomenon does not
have to be done on a continual basis. Further
study of the process can be conducted
quantitatively, using the new data forms,
possibly occasionally augmented with
interviews to track the evolution of the
process.

Qualitative data, mostly from interviews, is
also being used to some extent on other
ongoing SEL studies. In combination with
other quantitative methods, the team be-
lieves the use of qualitative analysis in
current and future studies will help the SEL
provide the development community with
more useful, in-depth, and realistic explana-
tions of software development phenomena.

5.4.2 Study Briefs

The SEL realized a need for compact
products because larger process documents
were not being used by technical personnel.
Time is of the essence, and if they need
information, they talk to an expert and
search the Web for others’ experiences. The
SEL, as the experience factory, sees as its
responsibility to serve as a base of knowl-
edge that can be tapped into. SEL Study
Briefs are an example of this as they con-

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 5–10

cisely document and quickly distribute
timely information. A study brief is less than
a process document, yet much more than
informal communications. The modularity
of the study briefs allows the user commu-
nity to incorporate one page’s worth of
process into their busy schedules. Study
briefs also serve as a tool for communication
with the inclusion of the technical commu-
nity in the feedback loop section. The study
team took advantage of electronic media by
putting the SEL Study Briefs on an internal
Web page and using E-mail as the feedback
mechanism. Additionally, the information
gained throughout a study can be docu-
mented in the form of a study brief, and at
the conclusion of the study, applicable study
briefs can be incorporated into a study report
such as this one. Table 5–1 shows the
content of a SEL Study Brief. A sample
study brief is shown in Appendix C.

Table 5–1. SEL Study Brief

Title Explanation

Study Brief Number: number assigned (in
order of posting on
Web)

Issue: topic of study brief

Purpose: goal of study brief

Current Understand-
ing:

body of the study brief,
may vary in style

Feedback: comments received
from audience after
study brief has been
posted to Web site

Original Author(s): person or persons
originating study brief

Responsible Author(s): person responsible for
receiving feedback,
and possibly modifying
the study brief (in most
cases, same as
original author)

Contributors: others who contributed
to the study brief

References/Relevant
Links:

materials used in
preparation of study
brief, additional
information on a topic,
or hot links to online
sources

History: first published date,
any revision dates

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 6–1

Section 6. Further Work

This initial phase of the COTS study was
valuable not only in making the contribu-
tions outlined in this document, but also in
clarifying the issues related to COTS-based
development that are likely to have an
impact on its success. A number of such
issues could not be addressed in this phase
of the study for various reasons, but will be
addressed in the next phase.

A major issue that is crucial to understand-
ing and ensuring the long-term success of
COTS-based development is how COTS-
based systems are maintained over time (i.e.,
sustaining engineering). The cost savings
and other advantages of incorporating COTS
into new systems may be overshadowed or
even wiped out if such systems are difficult
and costly to maintain. On the other hand,
the difficulties of integrating COTS may pay
off in maintenance if the high use of COTS
actually makes maintenance easier. It is not
clear which of these situations will prevail or
in what situations COTS will be a mainte-
nance asset or liability. This issue could not
be studied in the initial phase of the COTS
study because none of the COTS projects
identified had completed development and
entered into a sustaining engineering phase.
However, many of these projects are now
approaching the sustaining engineering, or
maintenance, stage and would be ideal
candidates for study in the next phase.

One of the original goals of the COTS study
was to build baseline models for such
development variables as cost, effort, and
defects. However, the study team very
quickly realized that the data currently
collected in the SEL was not adequate for
building such models, at least in the area of
effort. This led to the redesign of some data
collection forms, as described in Section 5.2.

These new forms are the infrastructure that
will facilitate the collection of data that can
then be used to build quantitative models for
cost and effort. Because few of the projects
studied had started testing their systems,
analysis of defect data will also have to wait
until enough experience has amassed, in the
form of collected data, on which to base
defect models.

Another issue that was raised again and
again during interviews with COTS-based
project personnel is the various risks that are
associated with this type of development.
Although there is no clear characterization
of these risks nor a set of risk mitigation
strategies, there is a great deal of qualitative
data from project personnel that identifies
some COTS-related risks. This data needs to
be analyzed, more data needs to be col-
lected, and investigation needs to be con-
ducted into strategies for avoiding and
minimizing these risks.

Clearly, much is left to learn about COTS-
based development. The study team has
identified several issues that need further
examination before it has an understanding
of how and when COTS-based development
succeeds in the FDD. However, studying
these issues would not be possible without
the underlying understanding gained by the
initial phase of the COTS study described in
this document.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 A–1

Appendix A. COTS Interview Guides

Interview Guide 1a: Initial project interviews

Who: Project leads

Subjects covered: Background and current status of project, GSS versus MATLAB decisions,
initial COTS information

Duration: 30 to 45 minutes

Note: This interview should also include introducing yourself and our study to the project leads.

Interviewee:

Interviewer:

Scribe:

Date of interview:

Duration:

Location:

Questions:

1. What is/are your ROLE(s) on this project?]Obtain both official titles, such as user, domain
expert, and a description (e.g., technical or administrative, level of involvement).]

2. What is the current status of FDSS development for this project? What are the different
applications being developed? Which have begun, are in progress, or are completed?
[Gradually narrow down to attitude applications.]

3. For each application, how is it being developed? Using GSS and UIX? Using some COTS
product such as MATLAB or STK? Did any modifications need to be made to the COTS or
GOTS products? Describe the modifications and how they were made.

4. What deployment, development, or integration process did you use to produce these applica-
tions? Where did this process come from? What process documentation or guidance did you
use, if any?

5. Are you aware of the SEL Packaged-Based System Development Process document?

6. Did you follow the SEL Packaged-Based System Development Process document?

7. Is there anything that we can do to make this a more useful, easier-to-follow process?

8. How were the decisions to use these COTS and GOTS products made? What were the steps
in the decision process? What were the criteria?

9. Were lessons learned recorded? Where?

10. What types of problems did you run into with the COTS and GOTS products you chose?

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 A–2

11. What do you think are the biggest risks associated with these decisions? [Try to get a map-
ping between the criteria mentioned in question 3 and the risks mentioned here.] For exam-
ple,

� Unacceptable performance of the application

� Reliability of COTS products

� Delays waiting for something from another group

� Delivered application is unmaintainable

� Required skills not available

� Key personnel leaving or being pulled off project at crucial points

� Cultural clashes between personnel from different areas

� Turnaround time for error fixes or added functionality

12. Any creative ways to protect against these risks?

13. What data did you collect during the project regarding COTS?

� schedule

� cost

� errors

� standard SEL data

14. What metrics do you see as valuable in managing COTS-based projects?

15. Was there a purchasing leader for this project? Who? (Discuss purchasing decisions and
procurement.)

16. What other projects do you know are using or planning to use COTS, GOTS, or other pack-
age-based products?

17. Can I be put on your project mailing list and/or could I have access to your project Web
page? What else would help me keep track of how the project is going? Where can I look at
project documentation?

18. Who are the other core team members and what are their roles?

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 A–3

Interview Guide 2: COTS Follow Up interviews

Who: COTS-based project leads

Subjects covered: Follow-up COTS information

Duration: 30 to 45 minutes

Note: This interview should also include reintroducing yourself and our study to the project
leads.

Interviewee:

Project(s):

Interviewer:

Scribe:

Date of interview:

Duration:

Location:

Date of initial interview:

Questions:

1. What did you do for the following? [Try to capture major activities, process, products, and
reviews.]

� Requirements analysis

� Package identification

� Architecture definition

� Package selection

� System integration

� Test

� Maintenance

2. What are the biggest differences between traditional development and package-based devel-
opment?

3. What are the advantages of package-based development in comparison with traditional
development?

4. What are the disadvantages of package-based development in comparison with traditional
development?

5. Are you familiar with the SEL Package-Based System Development Process document?

6. For an upcoming COTS-based project, would you use the SEL Package-Based System
Development Process document? If yes, why? If no, why not?

7. What parts of the process and/or the document would you improve and how?

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 A–4

Interview Guide 3: Additional COTS follow-up interviews

Who: COTS-based project leads

Subjects covered: Follow-up COTS information

Duration: 15 minutes

Note: This interview should also include reintroducing yourself and our study to the project
leads. Mention that this final interview is to verify the data already collected and clarify any areas
on which we need more information. For this interview, meet with the project lead and any other
team members that you think appropriate to include to verify all the data collected on that proj-
ect.

Interviewee(s):

Project(s):

Interviewer:

Scribe:

Date of interview:

Duration:

Location:

Date of initial interview:

Date of follow-up interview:

Before the interview,

� List the CTIFs that are on the Kano drive for that project

� Verify the matrix and supply any reasons why process steps were or were not followed

Bring to the interview,

� Matrix for that project

� Process characterization

Questions:

1. Have you completed CTIFs for each COTS or tool that you are currently using? [Definitely
for all SEL projects, ask non-SEL project to also comply.] If not, fill in hardcopies of CTIFs
during the interview with the project lead.

2. This is the process characterization that we have developed after interviewing projects. How
representative is it of your project? [Take notes on areas that they believe they differ from the
process characterization.]

3. These are the specific process steps that we noted during interviews. [Show matrix of steps
versus interviews for that project.] Allow me to review the data that we have from you as to
whether or not you followed a certain process step. Fill in YES for a project completed this
step; fill in NO for a project not done this step. Give a simple reason for why the project
completed or did not complete a step.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 B–1

Appendix B. SEL Forms

This appendix includes the following SEL forms:

� WEF (October 1995)

� COTS WEF (June 1997)

� Newest WEF (November 1997)

� CTIF

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 B–2

B.1 WEF (October 1995)

WEEKLY EFFORT FORM
Use this form to record all hours you worked during the week.

Name:

Project:

Date (Friday):

Application or Subsystem (or “N/A” as appropriate)

Release/Build Number (or “N/A” as appropriate)

SCR Number (or “N/A” as appropriate)

Hours By Activity (List hours in a separate column for each application, release/build, and SCR combination.)

P
R
E

Requirements
Spec. Definition/
Development

Hours spent defining and developing the requirements specifications

D
E

Requirements
Analysis

Hours spent understanding requirements specifications or understanding SCRs for
enhancements or adaptations

S
I

Error Analysis/
Debugging

Hours spent finding a known error in the system; may be in response to SFR, STR,
SCR (includes generation and execution of tests associated with finding the error)

G
N

Impact Analysis/
Cost Benefit
Analysis

Hours spent analyzing several alternative implementations and/or comparing their
impact on schedule, cost, and ease of operation

D
E
S

Design Creation or
Modification

Hours spent developing or changing the system, subsystem, or component design
(includes development of PDL, design diagrams, meeting materials, etc.)

I
G
N

Design Review/
Inspection

Hours spent reading or reviewing design (includes design meetings and consulta-
tions, as well as formal and informal reviews, walkthroughs, and inspections)

C
O

Code Generation/
Modification

Hours spent actually coding system components (includes both desk and terminal
code development)

D
E

Code Review/
Inspection

Hours spent reading code (for any purpose other than isolation of errors) or
inspecting other people’s code

Unit Testing Hours spent testing individual components of the system (includes writing test
drivers and informal test plans)

T
E

System Integration/
Integration Testing

Hours spent integrating components into the system; hours spent writing and
executing tests that integrate system components (includes system tests)

S Regression Testing Hours spent regression testing the modified system

T Independent
Testing Support

Hours spent supporting independent testing, including training of testers

M
I

Prototyping Hours spent prototyping to investigate a particular issue (not to be confused with
other activity hours when the entire system is a prototype)

S
C

COTS/GOTS Hours spent evaluating, selecting, procuring, integrating and testing COTS and
GOTS products

Documentation Hours spent creating and reviewing deliverable documents

O
T

Training for Self Hours spent taking courses (including computer-based training), attending seminars,
etc.

H
E

User Support/
Training

Hours spent training users and responding to their questions

R Management Hours spent managing or coordinating work and reporting status

Other Other development hours not covered above

Total Total hours per column 0.0 0.0

Grand Total Total hours 0.0

November 1995

For L ibra rian 's Use Only

Number:

Date:

En te red by:

Checked by:

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 B–3

B.2 COTS WEF (June 1997)

Experimental “COTS modified” WEEKLY EFFORT FORM
Use this form to record all hours you worked during the week.

Name:

Project:

Date (Friday):

Application or Subsystem (or “N/A” as appropriate)

Release Number (or “N/A” as appropriate)

Build Number (or “N/A” as appropriate)

SCR Number (or “N/A” as appropriate)

Hours By Activity (List hours in a separate column for each application, release/build, and SCR combination.)

P

R

E

Requirement Spec.
Definition/
Development

Hours spent defining and developing the requirements specifications

D

E

Requirements
Analysis

Hours spent understanding requirements specs or understanding SCRs for enhancements
or adaptations

S

I

Error Analysis/
Debugging

Hours spent finding a known error in the system; may be in response to SFR, STR, SCR

G

N

Impact Analysis/
Cost Benefit
Analysis

Hours spent analyzing several alternative implementations and/or comparing their impact
on schedule, cost, and ease of operation

D

E

S

COTS/GOTS
Evaluation

Hours spent in COTS/GOTS evaluation activities (i.e., identifying packages, collecting
information, attending demos, evaluating and selecting COTS/GOTS packages)

I

G

Design Creation or
Modification

Hours spent developing or changing the system, subsystem, or component design
(includes development of PDL, design diagrams, meeting materials, etc.)

N Design Review/
Inspection

Hours spent reading or reviewing design (includes design meetings and consultations,
formal and informal reviews, walkthroughs, and inspections)

C

O

D

COTS/GOTS
Integration

Hours spent integrating COTS/GOTS (and other software components) to produce
individual applications/subsystems (i.e., writing and debugging glueware, COTS package
familiarization)

E Code Generation/
Modification

Hours spent actually coding system components (includes both desk and terminal code
development)

Code Review/
Inspection

Hours spent reading code (for any purpose other than isolation of errors) or inspecting
other people’s code

Unit Testing Hours spent testing individual components of the system (includes writing test drivers and
informal test plans)

T

E

System Integration/
Integration Testing

Hours spent integrating components into the system; hours spent writing and executing
tests that integrate system components (includes system tests)

S Regression Testing Hours spent regression testing the modified system

T Independent Testing
Support

Hours spent supporting independent testing, including training of testers

M

I

S

Procurement Hours spent procuring/purchasing, interacting with vendor regarding licens-
ing/maintenance agreements, etc.

C Prototyping Hours spent prototyping to investigate a particular issue

Documentation Hours spent creating and reviewing deliverable documents

O Training for Self Hours spent taking courses (including computer-based training), attending seminars, etc.

T

H

User Support/
Training

Hours spent training users and responding to their questions

E

R

Configuration
Management

Hours spent in configuration management

R Management Hours spent managing or coordinating work and reporting status

COTS/GOTS Other Other COTS/GOTS specific hours not covered above

Other Other development hours not covered above

Total Total hours per column 0.0 0.0

Grand Total Total hours 0.0

A. Parra, June 1997

For L ibra rian 's Use Only

Number:

Date:

En te red by:

Checked by:

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 B–4

B.3 Newest WEF (November 1997)

WEEKLY EFFORT FORM
Use this form to record all hours you worked during the week.

Name:

Project:

Date (Friday):

Application or Subsystem (or “N/A” as appropriate)

Release Number (or “N/A” as appropriate)

Build Number (or “N/A” as appropriate)

SCR Number (or “N/A” as appropriate)

Hours By Activity (List hours in a separate column for each application, release/build, and SCR combination.)

P

R

E

Requirement Spec.
Definition/
Development

Hours spent defining and developing the requirements specifications

D

E

Requirements
Analysis

Hours spent understanding requirements specifications or understanding SCRs for
enhancements or adaptations

S

I

Error Analysis/
Debugging

Hours spent finding a known error in the system; may be in response to SFR, STR, SCR
(includes generation and execution of tests associated with finding the error)

N Impact Analysis/
Cost Benefit
Analysis

Hours spent analyzing several alternative implementations and/or comparing their impact
on schedule, cost, and ease of operation

D

E

COTS/GOTS
Evaluation

Hours spent in COTS/GOTS evaluation activities (i.e., identifying packages, collecting
information, attending demos, evaluating and selecting COTS/GOTS packages)

S

I

Design Creation or
Modification

Hours spent developing or changing the system, subsystem, or component design
(includes PDL, design diagrams, meeting materials, etc.)

G

N

Design Review/
Inspection

Hours spent reading or reviewing design (includes design meetings and consultations,
formal and informal reviews, walkthroughs, and inspections)

C

O

COTS/GOTS
Integration

Hours spent integrating COTS/GOTS (may be with other software components) to produce
individual applications/subsystems (i.e., writing and debugging glueware)

D

E

Code Generation/
Modification

Hours spent actually coding system components (includes both desk and terminal code
development)

Code Review/
Inspection

Hours spent reading code (for any purpose other than isolation of errors) or inspecting
other people’s code

Unit Testing Hours spent testing individual components of the system (includes writing test drivers and
informal test plans)

T

E

System Integration/
Integration Testing

Hours spent integrating components into the system or writing and executing tests that
integrate system components (includes system tests)

S Regression Testing Hours spent regression testing the modified system

T Independent Testing
Support

Hours spent supporting independent testing, including training of testers

COTS Package
Familiarization

Hours spent learning to use a COTS package (not formal training, which would be listed
under training for self; also does not include evaluation)

Prototyping Hours spent prototyping to investigate a particular issue (not to be confused with other
activity hours when the entire system is a prototype)

O Training for Self Hours spent taking courses (including computer-based training), attending seminars, etc.

T

H

User Support/
Training

Hours spent training users and responding to their questions

E CM Hours spent in configuration management

R Procurement Hours spent procuring/purchasing, interacting with vendor regarding licens-
ing/maintenance agreements, etc.

Documentation Hours spent creating and reviewing deliverable documents

Management Hours spent managing or coordinating work and reporting status

COTS/GOTS Other Other COTS/GOTS specific hours not covered above

Other Other hours not covered above (i.e., department and all-hands meetings)

Total Total hours per column 0.0 0.0

Grand Total Total hours 0.0

November 1997

For L ibra rian 's Use Only

Number:

Date:

En te red by:

Checked by:

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 B–5

B.4 CTIF

COTS AND TOOLS INFORMATION FORM
Use this form to obtain context and evaluation data, verify at project completion. For each COTS product or

tool, use a separate CTIF.

Name: Date:

Project:

COTS Product or Tool: Version Number: Vendor:

1. Reasons for using tool or COTS: Check all that apply.

 requirements definition requirements analysis requirements tracking/traceability

 design simulation/modeling code generation static analysis

 compilation debugging configuration management

 integration QA reengineering testing

 reverse engineering change management project tracking documentation

 training information management reuse management

 measurement risk analysis communication project planning/estimation

 application functionality

2. Support provided for tool or COTS: Check all that apply.

 demos informal or partial documentation full documentation courses help desk

3. Activities supported by tool or COTS: Check all that apply.

 requirements definition requirements analysis design coding testing

 documentation CM QA management other

4. Usage frequency of tool or COTS: (Select one from choices below, enter letter of selected item here.)

a. no usage b. used once or twice c. monthly d. weekly e. daily

5. Functionality of tool or COTS: (Select one from choices below, enter letter of selected item here.)

a. no data available b. abandoned, due to lack of functionality

c. major expected functions missing d. some expected functions missing

e. most expected functions present f. all expected functions present

6. Usefulness of tool or COTS: (Select one from choices below, enter letter of selected item here.)

a. no data available b. abandoned, due to problems c. many problems encountered

d. some problems encountered e. few problems encountered f. no problems encountered

7. Impact of tool or COTS on project’s success: (Select one from choices below, enter letter of selected item here.)

a. impossible to estimate b. major negative impact c. some negative impact overall

d. positive and negative impacts balance out e. some positive impact f. major positive impact

8. Is COTS or tool embedded in software, i.e., is COTS being delivered as part of the system? YES NO

A. Parra, September 1997

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 C–1

Appendix C. Sample SEL Study Brief

Study Brief Number: 7

ISSUE: COTS Evaluation Team

PURPOSE: Document the SEL’s understanding of the COTS Evaluation Team for the purpose
of disseminating information to the FDF community and clarification for the SEL in regards to
the COTS study.

CURRENT UNDERSTANDING:

The team was formed in 1995 to address a move toward COTS solutions in FDD. Originally part
of Code 551, Flight Mechanics. Currently part of the Code 550 Flight Dynamics Technical
Support Office (TSO).

Who is the Evaluation Team?

� Composed of problem domain experts and mission team members

� Led by Sue Hoge, GSFC analyst

� Matrixed on a as-needed basis, not dedicated full-time to evaluations

What are they doing?

� Evaluating COTS for Flight Dynamics mission planning and orbit determination

� Providing evaluation services to mission teams, as requested

� Providing independent software evaluations

� Monitoring new COTS products, as available, and maintaining data on products that meet
specific domain needs

� Publishing evaluation reports

� Updating Guidelines for Evaluating COTS at the FDF, as needed

What process is followed?

� Basic process is outlined in Guidelines for Evaluating COTS at the FDF

� Establish the objectives of an evaluation

� Establish the evaluation type

� Determine the evaluation method

 Basic/standard evaluation methods

 Variations on standard evaluation methods

� Establish evaluation criteria

� Perform evaluation

� Document results

� Perform benchmarks, regression testing, follow-up evaluations

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 C–2

What tools have they evaluated?

� STK (AGI)

� PODS (AGI)

� GEODYN(Code 900, GOTS)

� OASYS(ISI)

� PROBE(BBN)

� PATTERN (BBN)

� GREAS (AGI)

What problems have been encountered?

Public awareness of Evaluation Team and services is low.

What else was learned about the Evaluation Team?

� They are building an “experience base” of COTS evaluations (for multiple products,
multiple missions).

� Guidelines document

 Domain specific, and not intended to be a general methodology for any COTS soft-
ware evaluation

 Working document with lessons learned mixed in with process

 Written from hands-on perspective

What do we suggest?

The COTS product evaluation questions from Table 3 of SEL Packaged-Based System Develop-
ment (page 22) are valid in the COTS Evaluation Team environment. We recommend that the
SEL distribute the modified COTS product evaluation questions (addition of two questions
suggested by Sue Hoge) as a one-pager to technical personnel. We also recommend that the
Evaluation Team use modified COTS product evaluation questions as part of its process because
these are issues that Sue Hoge typically addresses with Evaluation Team.

FEEDBACK: None available at this time, E-mail comments to responsible author.

ORIGINAL AUTHOR(S): Amy Parra and Steve Kraft

RESPONSIBLE AUTHOR: Amy Parra

CONTRIBUTOR(S): Sue Hoge

REFERENCES/RELEVANT LINKS:

� Guidelines for Evaluating COTS at the FDF document

� STK Evaluation and Test Results

� STK PODS Evaluation Final Report

� OASYS Evaluation Report

� Interview notes (from two COTS study interviews with Sue Hoge)

HISTORY: Study brief published 11/11/97

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 R–1

References

1. Waligora, S., SEL Packaged-Based
System Development Process, 1996

2. SEL-81-305, SEL Recommended
Approach to Software Development,
Revision 3, June 1992

3. Glaser, B. G. and A. L. Strauss, The
Discovery of Grounded Theory:
Strategies for Qualitative Research,
Aldine Publishing Company, 1967

4. Miles, Matthew B. and A. Michael
Huberman, Qualitative Data Analy-
sis: An Expanded Sourcebook, 2nd
Edition, Sage Publications, 1994

5. SEL-85-004, Evaluation of Software
Technologies: Testing, Cleanroom,
and Metrics, May 1985

6. Seaman, C. B. and V. R. Basili, “An
Empirical Study of Communication
in Code Inspections,” Proceedings of
the 1997 International Conference
on Software Engineering, Boston,
MA, May 17-24, 1997

SOFTWARE ENGINEERING LABORATORY SERIES SEL-98-001

10042050W.7 AC–1

Acronyms

COTS commercial off-the-shelf

CSC Computer Sciences Corporation

CTIF COTS and Tools Information Form

FDD Flight Dynamics Division

GOTS Government off-the-shelf

GQM goal/question/metric

GSFC Goddard Space Flight Center

IMACCS Integrated Monitoring, Analysis, and Control COTS System

NASA National Aeronautics and Space Administration

ORR operational readiness review

SDR system design review

SEL Software Engineering Laboratory

SRR system requirements review

WEF Weekly Effort Form

